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A tuned mass damper is a kind of vibration damping device which has been widely used
in tall buildings, machinery, bridges, aerospace engineering and other fields. In practical
engineering applications, due to large deformation caused by large displacement, errors in
engineering constructions and the existence of limit devices, the structure and tuned mass
dampers inevitably produce some nonlinear characteristics, but these nonlinearities are often
ignored. The results of this study confirm that the nonlinearity of the structure and the mass
damper should be considered in the process of optimal frequency design, otherwise there will
be a large deviation between the design optimal frequency of the mass damper and the actual
optimal frequency. In this paper, nonlinear characteristics of the tuned mass damper and the
main structure are considered. The first-order differential equations are obtained by using
the complex average method, and the nonlinear equations of the tuned mass damper system
are derived by using the multi-scale method. On this basis, the parameters are determined.
The numerical results show that the error of the approximate solution method is small in the
given example. The nonlinear tuned mass damper with nonlinear design exhibits a better
control performance.

Keywords: nonlinear characteristics, complex average method, multi-scale method, nonlinear
design, control performance

1. Introduction

Modern structures require more and more vibration reduction. This has led to the production
of shock absorbers with better damping performance and lower cost so as to reduce the weight
of the structure and thus improve practicality. This trend has led to the development of smaller,
lighter and cheaper shock absorbers. As a result, modern structures have to face with more
complex interferences and low structure weight, which often leads to nonlinear vibration. The
problem of nonlinear vibration is increasingly prominent. Reduction of the nonlinear vibration
becomes a significant challenge. At the same time, the design, selection and parameters of control
devices become a significant research topic (Housner et al., 1997; Ramlan et al., 2010; Lin et al.,
2015; Lu et al., 2018).
Passive control devices are simple to install, independent of power and cost, and have been

widely studied and applied. The tuned mass damper (TMD) is a common passive control device.
The principle is roughly that the energy of the main structure is transferred to the tuned mass
damper through a linear or nonlinear spring, and then the energy is dissipated through the
damping member connecting the main structure and the mass block. TMDs were first proposed
by Watts in 1883 and subsequently patented by Frahm (1911), which aroused interest among
engineers and vibration researchers. With the passage of time, Ormondroyd and Den Hartog
(1928) studied an undamped primary structure and a two degree of freedom structure with
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TMD and deduced the solution formula. Based on the above system, Den Hartog (1956) found
the optimization formula based on fixed point theory in his work, which made the research of
TMD more in-depth and of engineering practical significance. Subsequently, Tsai and Lin (1993)
presented the analytical formula for optimal parameter design of TMD with the main structure
based on Den Hartog fixed point theory. With the in-depth exploration of problems related to
TMDd, studies on parameter design of linear TMD have been well made and summarized in
literature (Frahm, 1911; Ormondroyd and Den Hartog, 1928; Den Hartog, 1956; Tsai and Lin,
1993; Elias and Matsagar, 2017; Warburton and Ayorinde, 1980). A mature research on linear
mass dampers and an in-depth study of multiple tuned mass dampers are given in (Bhowmik
and Debnath, 2022; Li et al., 2020; Zhang et al., 2022; Matin et al., 2020; Kim and Lee, 2020),
on nonlinear mass dampers in (Farshi and Assadi, 2011; Badamchi et al., 2921; Alexander and
Schilder, 2009) and on other mass dampers in (Qiu et al., 2018; Tai, 2020; Lian et al., 2018;
Zhao et al., 2020; Almazán et al., 2007; Kecik and Mitura, 2020). It was shown that nonlinear
mass dampers have longer bandwidth and vibration reduction effects. It is proved that it is
effective in broadening the effective suppression bandwidth of the frequency response curve. In
general, the method of introducing nonlinear stiffness into a mass damper system is to introduce
stiffness nonlinearity. A more effective nonlinear stiffness is cubic stiffness. Due to the strong
amplification effect of higher order terms, it brings the risk of large error, so few people have
carried out an in-depth research. The Nonlinear Tuned Mass Damper (NTMD), which possesses
nonlinear springs or nonlinear damping, was engineered in 1952. To solve the limitations of TMD,
Robertson (1952) first studied the undamped cubic nonlinear mass damper system. The results
showed that its bandwidth was much wider than TMD in the case of parameter optimization.
Natsiavas (1992) studied the steady-state solution and stability of a weakly nonlinear mass
damper system, and obtained the steady-state solution by using the approximate solution. In
fact, the nonlinearity is inevitable, and some of its effects on the structure are so small that they
can be ignored. In some cases, nonlinear factors affect the vibration process, and even lead to
destruction of the material, so it is necessary to consider the influence of nonlinear factors on the
structure. In the determination of mass damper parameters, the results of this study confirm
that the desired damping effect can not be obtained without considering the nonlinearity of
the structure. Especially when the structural nonlinearity and the mass damper nonlinearity
exist at the same time, these two nonlinearities need to be considered simultaneously, otherwise
the optimal design frequency will deviate greatly from the actual optimal frequency. In 2003,
considering that the averaging method and the multi-scale method are not directly applicable
to the research of a nonlinear mass damper system, Jiang et al. (2003) proposed a new method
based on a complex variable averaging method in order to better distinguish the fast variable
term and slow variable term in the response. The results of this method were verified by an
experimental method, and it was found that it had high accuracy. Subsequently, Manevitch
et al. (2007) adopted the complex variable averaging method and the multi-scale method to
analyze the mass damper system with cubic nonlinear stiffness and verified its effectiveness by
numerical solution. Subsequently, Li and Zhang (2020) obtained first-order differential equations
based on the average method of complex variables, and then obtained optimal parameters of
mass dampers by using the multi-scale method.

Mass dampers have many applications in building structures and automobile vibration reduc-
tion. In order to facilitate the research, the current analysis is mainly focused on an illustrative
model structure with two degrees of freedom. The research on the conversion from a multi-degree
of freedom main structure to a single degree of freedom system is mainly to conduct modal anal-
ysis on the main structure. Taking its first-order modal mass, the first-order frequency and
first-order damping ratio, the multi-degree of freedom main structure can be approximately
simplified to a single degree of freedom structure. In this paper, for the NTMD system for a
two degree of freedom structure, the first order differential equations of amplitude and phase are
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obtained by using the variable parameter method and average method to solve the nonlinear sys-
tem. Then, the nonlinear equations of amplitude are obtained by the using multi-scale method.
The accuracy of the solution process is verified by a numerical method. Finally, according to the
obtained expression, the frequency parameters of the tuned mass damper are found.

2. Analysis of nonlinear TMD structure

2.1. Governing equations

According to the literature (Banerjee et al., 2022), a multi-degree of freedom building struc-
ture can be idealized into a linear single degree of freedom system. When using this method
for simplification, the first-order modal mass, first-order modal stiffness and first-order modal
damping of the multi-degree of freedom structure can be simplified as the main structural model,
and TMD is added to it. Therefore, the above structure is simplified into a two degree of freedom
TMD system. In this paper, it is considered that the weak nonlinear stiffness of the structure is
an inevitable parameter, so the cubic stiffness nonlinearity of the main structure and the TMD
are considered.

Fig. 1. Nonlinear mass dampers and structural dynamic system

Figure 1, as an illustrative example of a nonlinear mass damper system, is a two-DOF
dynamic system. The main structure is influenced by a cosine harmonic excitation force with
the amplitude F and excitation frequency ω. It is connected to the wall through a nonlinear
spring and linear damping, and at the same time, it is connected to the mass damper through the
nonlinear spring and linear damping. This model ignores frictional forces everywhere, and two
coupled second-order differential equations can be obtained by Newton’s second law as follows

m1ü1 + c1u̇1 + k1u1 + k3u
3
1 +m2ü2 = F cosωt

m2ü2 + c2(ü2 − ü1) + k2(u2 − u1) + k4(u2 − u1)
3 = 0

(2.1)

Equations (2.1) can be written in the following form for subsequent analysis. For the deriva-
tion process one can refer to the literature (Li and Zhang, 2020)

ü1 + ελ1ü1 + ω
2
1u1 + εα1ω

2
1u
3
1 + εü2 = εf cosωt

ü2 + λ2(u̇2 − u̇1) + ω
2
2(u2 − u1) + α2ω

2
2(u2 − u1)

3 = 0
(2.2)
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Among them

m2

m1
= ε

k1

m1
= ω21

k2

m2
= ω22

c1

m1
= ελ1

F

m1
= εf

c2

m2
= λ2

k3

k1
= εα1

k4

k2
= α2

By performing the coordinate transformation, converting u1 and u2 to new coordinates x and y,
respectively, as shown below

x = u1 + εu2 y = u1 − u2 (2.3)

u1 and u2 can be represented in terms of x and y as follows

u1 =
x+ εy

1 + ε
u2 =

x− y

1 + ε
(2.4)

Equation (2.4) is now represented by the new coordinates.
Substitute the expression into Eqs. (2.2) to obtain the coordinate transformed equation

ẍ+
ελ1(ẋ+ εẏ)

1 + ε
+ ω21
x+ εy

1 + ε
+ εα1ω

2
1

(x+ εy)3

1 + ε
= εf cosωt

ÿ − ẍ+ λ2(1 + ε)ẏ + ω
2
2(1 + ε)y + α2ω

2
2(1 + ε)y

3 = 0

(2.5)

Equations (2.5) are generalized coordinate equations after transformation.

2.2. Taylor expansion

In order to facilitate the use of the later perturbation analysis method, Eqs. (2.5) are decou-
pled by using the Taylor expansion. Consider Eqs. (2.5) in terms of the mass ratio ε, expand
at r(0 + ε) and keep to the first term. Since ε is small, the first-order expansion can satisfy the
subsequent analysis

r(ε) = r(0) + εr′(0) (2.6)

Then r(0) and r′(0) of Eqs. (2.5) are as follows

r(0) = ẍ+ ω21x r′(0) = λ1ẋ+ ω
2
1y − ω

2
1x+ α1ω

2
1x
3 − f cosωt (2.7)

and

r(0) = ÿ − ẍ+ λ2ẏ + ω
2
2y + α2ω

2
2y
3 r′(0) = λ2ẏ + ω

2
2y + α2ω

2
2y
3 (2.8)

From equations (2.6) to (2.8), the following decoupled equation can be obtained

ẍ+ ω21x+ ε(λ1ẋ+ ω
2
1y − ω

2
1x+ α1ω

2
1x
3 − f cosωt) = 0

ÿ + ω21y + λ2ẏ + α2ω
2
2y
3 + ω21(x− y) + ω

2
2y

+ ε(λ2ẏ + ω
2
2y + α2ω

2
2y
3 + λ1ẋ+ ω

2
1y − ω

2
1x+ α1ω

2
1x
3 − f cosωt) = 0

(2.9)

The solutions of x and y can be set in the form of (2.10), where A1 and A2 are the expressions
of complex variables of the amplitude and phase respectively, and cc is the complex conjugate
of the preceding term

x =
1

2iω
A1e
iωt + cc y =

1

2iω
A2e
iωt + cc (2.10)
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By taking the derivatives of equations (2.10) with respect to time t, and making A1 and A2
functions of time t, ẋ and ẏ have the same features as x and y. A part of the theory refers to
the equalization method in (Nayfeh and Mook, 1981)

ẋ =
1

2
A1e
iωt + cc ẏ =

1

2
A2e
iωt + cc (2.11)

Similarly, take two derivatives of equations (2.10) with respect to time t

ẍ = A1e
iωt +

1

2
iωA1e

iωt + cc ÿ = A2e
iωt +

1

2
iωA2e

iωt + cc (2.12)

By substituting the expressions of x, y, ẋ, ẏ, ẍ, ÿ obtained by the parameter variational
method and the averaging method into equations (2.9), the second-order differential equations
can be reduced to the first-order ones

(

A1 +
1

2
iωA1

)

eiωt +
1

2i
ω21A1e

iωt + ε
(1

2
λ1A1e

iωt +
ω21
2iω
A2e
iωt

−
ω21
2iω
A1e
iωt −

α1ω
2
1

8iω3
A31e
3iωt +

α1ω
2
1

8iω3
|A1|

2A1e
iωt −

f

2
eiωt
)

+ cc = 0

(

A2 +
1

2
iωA2

)

eiωt +
1

2i
ω21A2e

iωt +
1

2
λ2A2e

iωt −
α2ω

2
2

8iω3
A32e
3iωt +

α2ω
2
2

8iω3
|A2|

2A2e
iωt

+ ω21

( 1

2iω
A1e
iωt −

1

2iω
A2e
iωt
)

+ ω22
1

2iω
A2e
iωt + ε

(1

2
λ2A2e

iωt +
ω22
2iω
A2e
iωt

−
α2ω

2
2

8iω3
A32e
iωt +

α2ω
2
2

8iω3
|A2|

2A2e
iωt +

1

2
λ1A1e

iωt + ω21
1

2iω
A2e
iωt

− ω21
1

2iω
A1e
iωt −

α1ω
2
1

8iω3
A31e
3iωt +

α1ω
2
1

8iω3
|A1|

2A1e
iωt −

f

2
eiωt
)

+ cc = 0

(2.13)

It is well known that the mass damper system has the maximum amplitude of the main
structure around the excitation frequency and the main structure. This paper only focuses on
the amplitude when the excitation frequency is close to the frequency of the main structure.
Therefore, ω ≈ ω1 is set, and only the exp(iωt) term is retained, which is the long-term term
and needs to be eliminated according to its triangular form. According to the above principle,
equations (2.13) can be reduced to

(

A1 +
1

2
iωA1

)

+
1

2i
ω21A1 + ε

(1

2
λ1A1 +

ω21
2iω
A2 −

(ω21
2iω
A1 +

α1ω
2
1

8iω3
|A1|

2A1 −
f

2

)

= 0

(

A2 +
1

2
iωA2

)

+
1

2i
ω21A2 +

1

2
λ2A2 +

α2ω
2
2

8iω3
|A2|

2A2 + ω
2
1

( 1

2iω
A1 −

1

2iω
A2

)

+ ω22
1

2iω
A2 + ε

(1

2
λ2A2 +

ω22
2iω
A2 +

α2ω
2
2

8iω3
|A2|

2A2 +
1

2
λ1A1

+ ω21
1

2iω
A2 − ω

2
1

1

2iω
A1 +

α1ω
2
1

8iω3
|A1|

2A1 −
f

2

)

= 0

(2.14)

If we set ω = ω1 + εσ and keep the binomial theorem to a small quantity of the first order,
the above equation can be reduced to

1

ω
=

1

ω1 + εσ
=
1

ω1
−
εσ

ω21
+
ε2σ2

ω31
+ . . .

1

ω3
=

1

(ω1 + εσ)3
=
1

ω31
−
3εσ

ω41
+ . . .

Ȧ1 + ε
(

iσA1 +
1

2
λ1A1 −

iω1
2
A2 +

iω1
2
A1 −

3iα1
8ω1
|A1|

2A1 −
f

2

)

= 0 (2.15)
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Ȧ2 +
1

2
λ2A2 −

3iα2ω
2
2

8ω31
|A2|

2A2 −
iω1
2
A1 +

iω1
2
A2 −

iω22
2ω1
A2

+ ε
(

iσA2 +
9iα2ω

2
2σ

8ω41
|A2|

2A2 +
iσA1
2
−
iσA2
2
+
iω22
2ω21
σA2 +

1

2
λ2A2 −

iω22
2ω1
A2

−
3iα2ω

2
2

8ω31
|A2|

2A2 +
1

2
λ1A1 + ω

2
1

1

2iω
A2 +

iω1
2
A1 −

3iα1
8ω1
|A1|

2A1 −
f

2

)

= 0

For the subsequent use of the multi-scale method, equation (2.15)4 can be written as

Ȧ2 + εδ
(1

2
λ2A2 −

3iα2ω
2
2

8ω31
|A2|

2A2 −
iω1
2
A1 +

iω1
2
A2 −

iω22
2ω1
A2

)

+ ε
(

iσA2 +
9iα2ω

2
2σ

8ω41
|A2|

2A2 +
iσA1
2
−
iσA2
2
+
iω22
2ω21
σA2 +

1

2
λ2A2 −

iω22
2ω1
A2

−
3iα2ω

2
2

8ω31
|A2|

2A2 +
1

2
λ1A1 + ω

2
1

1

2iω
A2 +

iω1
2
A1 −

3iα1
8ω1
|A1|

2A1 −
f

2

)

= 0

(2.16)

In formula (2.15)2, εδ = 1.

3. Multi-scale method

The multi-scale expansion method of the above equations is as follows

T0 = t T1 = εt · · ·

A1 = A10 + εA11 A2 = A20 + εA21
d

dt
= D0 + εD1 Dn =

∂

∂Tn

(3.1)

By substituting the above expressions of A1, A2 and the time derivative into equations (2.15)3
and (2.16), the following differential equation can be obtained

(D0 + εD1)(A10 + εA11) + ε
[

iσ(A10 + εA11) +
1

2
λ1(A10 + εA11)−

iω1
2
(A20 + εA21)

+
iω1
2
(A10 + εA11)−

3iα1
8ω1
|A10 + εA11|

2(A10 + εA11)−
f

2

]

= 0

(D0 + εD1)(A20 + εA21) + εδ
[1

2
λ2(A20 + εA21)−

3iα2ω
2
2

8ω31
|A20 + εA21|

2(A20 + εA21)

−
iω1
2
(A10 + εA11) +

iω1
2
(A20 + εA21)−

iω22
2ω1
(A20 + εA21)

]

= 0

(3.2)

If equations (3.2) are taken as polynomials of ε, the first and second order coefficients of ε
can be derived as follows

ε0 : D0A10 = 0 D0A20 = 0

ε1 : D1A10 + iσA10 +
1

2
λ1A10 −

iω1
2
A20 +

iω1
2
A10 −

3iα1
8ω1
|A10|

2A10 −
f

2
= 0

(3.3)

and

D1A20 + δ
(1

2
λ2A20 −

3iα2ω
2
2

8ω31
|A20|

2A20 −
iω1
2
A10 +

iω1
2
A20 −

iω22
2ω1
A20

)

= 0 (3.4)
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At present, the research on mass dampers mainly focuses on the steady state of vibration.
In this study, if it is in the steady state, the derivative in equation (3.3)2 and (3.4) is set to 0

iσA10 +
1

2
λ1A10 −

iω1
2
A20 +

iω1
2
A10 −

3iα1
8ω1
|A10|

2A10 −
f

2
= 0

1

2
λ2A20 −

3iα2ω
2
2

8ω31
|A20|

2A20 −
iω1
2
A10 +

iω1
2
A20 −

iω22
2ω1
A20 = 0

(3.5)

By expanding A10 and A20 into complex numbers

A10 = a1(cos b1 + i sin b1) A20 = a2(cos b2 + i sin b2) (3.6)

substituting equation (3.6) into equations (3.5), separating the real and imaginary parts, and
setting ω1 = 1 to facilitate further analysis and solution, we have

λ1a1 + a2 sin(b2 − b1) = f cos b1

(2σ + 1)a1 −
3α1a

3
1

4
− a2 cos(b2 − b1) = −f sin b1

λ2a2 = a1 sin(b2 − b1)

3α2ω
2
2a
3
2

4
+ (ω22 − 1)a2 = −a1 cos(b2 − b1)

(3.7)

The trig function cancelling b1 and b2 is obtained, order σ = 0

[3α2ω
2
2a
3
2 + 4(ω

2
2 − 1)a2]

2 + 16λ22a
2
2 = 16a

2
1

λ21a
2
1 + a

2
2 + 2λ1λ2a

2
2 + a

2
1

(

1−
3α1a

2
1

2
+
9α21a

4
1

16

)

− 2a2
(

1−
3α1a

2
1

4

)

√

a21 − λ
2
2a
2
2 = f

2
(3.8)

In order to verify the accuracy of the above approximate solution method, equations (2.5)
and (3.8) have been substituted into examples and solved twice by a numerical method to obtain
frequency-amplitude curves of generalized coordinates after coordinate transformation. Figure 2
shows that the two curves are very close to each other, meeting the requirements of subsequent
analysis.

Fig. 2. Frequency-amplitude curve obtained using the Runge-Kutta method and the multi-scale method
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4. Optimized frequency analysis of TMD

4.1. Algebraic equation of energy ratio

At different TMD frequencies, the amplitude is different, which leads to an optimal TMD fre-
quency at which the amplitude of the main structure is minimum. In order to find the optimized
frequency, it can be analyzed from the energy ratio. According to Eq. (2.3), x is approximately
equal to displacement of the main structure, and y is the relative displacement of the main
structure and the mass damper. In Fig. 2, the image of the peak line is the image of the ampli-
tude of the relative displacement of the mass damper and the main structure changing with the
frequency of the mass damper, and the image of the sunken line is the image of the amplitude
of the main structure changing with the frequency of the mass damper. According to Fig. 2,
when the amplitude of the relative displacement between the mass damper and the structure
is maximum, the amplitude of the structure is minimum. According to the above conclusion,
when the displacement amplitude of the main structure divided by the relative displacement
amplitude is minimum, it is the optimal frequency. In short, the frequency at which the energy
ratio E is the smallest, is the optimized frequency of the mass damper

E1 = a
2
1 E2 = a

2
2 E =

a21
a22

(4.1)

Fig. 3. Frequency-energy ratio curve obtained using the numerical and multi-scale method

Figure 3 shows the change of energy ratio E caused by the change of mass damper frequency,
and the selection of calculation example is the same as that in Fig. 2. By comparison, it can be
seen that when the energy ratio E is the smallest, the displacement of the main structure is also
the smallest, which confirms the accuracy of optimal frequency design using the energy ratio
formula above. If the energy expressions are used for coordinate transformation of equations
(3.8), the following expressions can be obtained

E32
9α21E

3

16
+E22

(

−
3α1E

2

2
+
3α1E

2

√

E − λ22

)

+ E2
(

λ21E + 1 + 2λ1λ2 + E − 2
√

E − λ22

)

− f2 = 0

[

−
3α2ω

2
2E2

4
+ (1− ω22)

]2
= E − λ22

(4.2)
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4.2. Comparison between analytical solution and numerical method

This Section mainly checks the accuracy of the optimal frequency obtained according to
the energy ratio design method by algebraic equations (4.2), and indirectly tests the accuracy
of algebraic equations (3.8) obtained by this solution method. Of course, the solution time
of algebraic equations is better than that of differential equations. Due to the limited space,
it will not be described in detail in this paper. The accuracy is mainly compared with the
TMD frequency of the minimum steady-state solution of the main structure obtained by solving
differential equations (2.2) by the numerical method, so as to judge its accuracy. Because this
paper mainly studies the structure with a small nonlinear coefficient, the response of the structure
is in the steady-state stage, and there is no static bifurcation or jump phenomenon. It is verified
that the response is independent of the initial conditions, so its steady-state response is the same
under different initial conditions. The TMD frequency corresponding to the minimum steady-
-state response of the time history curve solved by the numerical method is compared with the
optimal frequency obtained by the analytical method to verify the accuracy of this method. For
F = 0.3N, λ1 = 5, λ2 = 0.16, the excitation frequency and the main structure frequency are
equal to 1. When α1 = 0 and α1 = 1 are compared, the optimal frequency variation of α2 is
from 0 to 0.01 as shown in Table 1 for the comparison of numerical and analytical solutions.

Table 1. Optimal frequency of the tuned mass damper, comparison between the numerical and
analytical methods

α1 α2 Numerical solution Analytical solution

0

0.000 1.006 1.000
0.005 0.897 0.893
0.010 0.817 0.818
0.015 0.753 0.763
0.020 0.703 0.720

1

0.000 0.999 1.000
0.005 0.890 0.892
0.010 0.809 0.817
0.015 0.745 0.762
0.020 0.696 0.719

The comparison results in the table show that when the excitation force is determined and
the nonlinear coefficient is different, the error between the analytical solution and the simulation
solution increases with an increase of the nonlinear coefficient, but the error is also very small.
In the main research field of this paper, the nonlinear coefficient in practice is generally small,
and the maximum error frequency is only 0.025, which meets the requirements of subsequent
analysis.

4.3. TMD frequency design

A two-DOF system consisting of a main structure with cubic nonlinear stiffness and a non-
linear TMD with cubic nonlinear stiffness is taken as the research object. The parameters of the
structure are m1 = 1kg, c1 = 0.1Ns/m, k1 = 1N/m. The external load is a harmonic excitation,
the excitation amplitude is F = 0.3N, the excitation frequency is ω = 1. As shown in Equations
(2.3), the parameters are found according to the optimization method of the linear TMD. The
mass ratio is ε = 0.02, so the parameters of TMD can be expressed as λ1 = 5, λ2 = 0.16. Because
TMD in practice may produce nonlinear factors, large displacement and the existence of a limit
device, the structure and quality of the linear damper are likely to produce nonlinear effects.
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This article explores the structure itself due to the actual project of a nonlinear mass damper
and determines optimal parameters with the influence of nonlinear stiffness for α1 and α2.
As shown in Fig. 4, when the nonlinear parameters of the mass damper increase, the optimal

frequency decreases, which is shown on the left in the graph. At the same time, there is a more
obvious change near the optimal frequency, which is shown to be steeper in the graph. When
α2 = 0.03, that is when the cubic nonlinear stiffness of the mass damper is 3% of the linear
stiffness value, the optimal frequency ω2opt shifts from 1 to 0.65, which is a very large deviation
and has a great influence on the vibration of the structure.

Fig. 4. Frequency-energy ratio curve obtained using the multi-scale method (F = 0.3N, α1 = 0.5)

A linear design refers to the design of nonlinear structures by using the traditional linear
method without considering nonlinear parameters of the tuned mass damper and the structure.
Nonlinear design refers to consideration of nonlinear parameters α1 = 0.5, α2 = 0.03 by using
equations (4.2) to find the optimal frequency. In linear design, the optimal frequency is ω2opt = 1.

Fig. 5. Linear and nonlinear design (F = 0.3N, α1 = 0.5, α2 = 0.03): (a) frequency of
excitation-amplitude curves using the multi-scale method, (b) time history curves obtained using the

numerical method

Figure 5a shows that the maximum displacement is achieved at the excitation frequency
ω = 1.01. If the nonlinear design is adopted, the optimal frequency is ω2opt = 0.65, and the



Analysis of a nonlinear tuned mass damper by using... 473

maximum displacement is obtained at ω = 1.05. The time history diagram of the above main
structure at the excitation frequency of its maximum displacement can be drawn, as shown in
Fig. 5b. The above results show that there is a large deviation between the optimal frequency
of the linear design and the nonlinear one ω2opt = 1 → 0.65, and the nonlinear design effect is
good.

Some papers have studied nonlinearity of tuned mass dampers, but few people considered
the nonlinearity of both structure and mass dampers. In this paper, it is found that when the
nonlinear parameter of the mass damper is zero, that is α2 = 0, it can be seen from equation
(4.2)2 that the energy ratio E is only related to the frequency of the mass damper and gets
the minimum value at ω2 = 1. When the nonlinearity of the mass damper exists, it is difficult
to see the influence from the equation alone, which can be further studied by using numerical
examples. The nonlinear parameters of one structure are α1 = 1, α2 = 0.02, and those of the
other structure are α1 = 1, α2 = 0.02 with the same other parameters. It can be seen from
Fig. 5a that the optimal frequency has a certain deviation. Specifically, the optimal frequency
offset is ω2opt = 0.59→ 0.66, that is, the nonlinearity of the mass damper decreases the optimal
frequency, while the nonlinearity of the structure increases the optimal frequency. Figure 5b
shows a comparison between the above example without considering the structural nonlinearity
and when the excitation frequency changes. According to Fig. 6c, the two curves are the time

Fig. 6. Linear and nonlinear design (F = 0.3N, α2 = 0.02): (a) frequency-energy ratio curve obtained by
using the numerical method, (b) frequency of excitation-amplitude curves found using the multi-scale

method, (c) time history curves obtained by using the numerical method
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history curves under the excitation frequency of the maximum amplitude, respectively. It is not
difficult to see that the structure has a good optimization effect after considering the nonlinearity
of the structure.

As shown in Fig. 7, under different excitation frequencies, there is a maximum value of
resonance for the main structure. When only the maximum amplitude of the main structure is
compared, the linear mass damper with linear design has the best damping effect. As shown
in Fig. 7, the yellow line represents the result without considering the nonlinearity of the mass
damper, that is, the frequency diagram obtained for the optimal parameters of the linear mass
damper. This is the vibration reduction effect of the mass damper in the ideal state. In practical
engineering, the nonlinearity of mass dampers is an inevitable parameter. If the linear design is
used to produce a nonlinear mass damper, which is indicated by the red dotted line in the figure,
the vibration reduction effect is the worst, however notceable. If parametric design equations
(4.2) are used for nonlinear design of the above nonlinear structure, the results obtained are
better than those obtained by the linear design, but the desired damping effect of the linear mass
damper is not achieved. The results of the above design are obtained under the condition that
other parameters are determined, and only the excitation frequency changes and the nonlinearity
of the mass damper exists. If the changes of other parameters are considered, the mass damper
may have more optimized effects. In some experiments, it was found that the mass damper could
not reach the expected effect, that is, the nonlinearity of the structure and the mass damper
was not considered.

Fig. 7. Frequency of the excitation-amplitude of the primary structure curve
(F = 0.3, α1 = 0.5, α2 = 0.01)

As shown in Fig. 8, the time-history curve shows intuitively that applying NTMD, whether
linear or nonlinear design is used, can effectively reduce the displacement and acceleration of the
steady-state response and transient response of the main structure. In this case, at the beginning
of its transient response, the uncontrolled structure, the improved design and the linear design
have the same response. In the subsequent steady-state response, the amplitude of the improved
design is about 50% of that of the uncontrolled structure, and the amplitude of the linear design
is about 70% of that of the uncontrolled main structure.
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Fig. 8. Time-displacement curve using no TMD, linear and nonlinear design
(F = 0.3, α1 = 0.5, α2 = 0.01)

5. Conclusion

In this paper, the nonlinear main structure and the nonlinear mass damper are studied. Taylor’s
expansion is used to decouple the equation of motion, and then the first order differential form of
the equation is obtained by using the variational parameter method and the averaging method.
Finally, the multi-scale method is used to solve the equations, and nonlinear equations for the
amplitude and frequency are obtained. The equation obtained is formally valid for ε → 0, but
it needs to be used with care when mass dampers are used in systems with higher mass of
the primary structure, because of mixing of the fast and slow time scales. Nevertheless, the
method can be used to qualitatively evaluate at least some nonlinear mass damper systems. The
conclusions are as follows:

• The results of solving the nonlinear equations obtained by the multi-scale method are
compared with the results of solving the original two-degree-of-freedom second-order dif-
ferential equations by the numerical method, and the error is small. The accuracy of the
method is verified.

• The results show that the linear design formula has a poor effect on the design of nonlinear
mass dampers, and the approximate optimization design formula based on energy has a
better effect on the frequency findings of nonlinear mass dampers.

• The results show that if nonlinearity of the mass damper does not exist, the nonlin-
earity of the structure does not affect the change of the optimal frequency. If the mass
damper nonlinearity exists, the structure nonlinearity will cause a change of the optimal fre-
quency.

Improvement and exploration: This paper mainly explores the steady-state response for
small nonlinear coefficients. The differential equations have stable solutions under variable initial
conditions. In the case of a large nonlinear coefficient, in a certain TMD frequency range, the
response will jump under different initial conditions, and the stability and sensitivity analysis
must also be carried out. Due to the limited space of this paper, the above analysis process will
be studied and discussed in the next paper.
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